skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Noordhoek, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thin films of elemental metals play a very important role in modern electronic nano-devices as conduction pathways, spacer layers, spin-current generators/detectors, and many other important functionalities. In this work, by exploiting the chemistry of solid metal-organic source precursors, we demonstrate the molecular beam epitaxy synthesis of elemental Ir and Ru metal thin films. The synthesis of these metals is enabled by thermodynamic and kinetic selection of the metal phase as the metal-organic precursor decomposes on the substrate surface. Film growth under different conditions was studied using a combination of in situ and ex situ structural and compositional characterization techniques. The critical role of substrate temperature, oxygen reactivity, and precursor flux in tuning film composition and quality is discussed in the context of precursor adsorption, decomposition, and crystal growth. Computed thermodynamics quantifies the driving force for metal or oxide formation as a function of synthesis conditions and changes in chemical potential. These results indicate that bulk thermodynamics are a plausible origin for the formation of Ir metal at low temperatures, while Ru metal formation is likely mediated by kinetics. 
    more » « less